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ABSTRACT 
We present Scratch Input, an acoustic-based input tech-
nique that relies on the unique sound produced when a fin-
gernail is dragged over the surface of a textured material, 
such as wood, fabric, or wall paint. We employ a simple 
sensor that can be easily coupled with existing surfaces, 
such as walls and tables, turning them into large, unpow-
ered and ad hoc finger input surfaces. Our sensor is suffi-
ciently small that it could be incorporated into a mobile 
device, allowing any suitable surface on which it rests to be 
appropriated as a gestural input surface. Several example 
applications were developed to demonstrate possible inter-
actions. We conclude with a study that shows users can 
perform six Scratch Input gestures at about 90% accuracy 
with less than five minutes of training and on wide variety 
of surfaces.  
 

ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces - Input devices and strategies.  
General terms: Design, Human Factors 

Keywords: Finger input, gestures, surfaces, acoustic sens-
ing, ad hoc interaction, mobile devices.  

INTRODUCTION 
The potential benefits of moving computing and communi-
cation into aspects of life that transcend the work environ-
ment are significant. Offices provide a relatively controlled 
environment where standing technology infrastructure can 
be deployed. However, this becomes inaccessible once we 
leave the office and even when we simply move around 
within the workplace. Today’s powerful mobile computing 
devices offer one way to overcome this, allowing us to 
carry parts of our infrastructure with us. However, because 
they are carried, we prefer them to be small. This pushes us 
into using tiny displays, buttons, keyboards, and other input 
methods rather than, for example, making use of large sur-
faces for input. Even in the home where we could deploy 
computing infrastructure, the cost, difficulty, and intrusion 
of installation is often prohibitive.  
In this paper, we consider a new input technique that allows 
small devices to appropriate existing, large, passive sur-
faces such as desks and walls, for use as a kind of input 

device. This Scratch Input technique operates by listening 
to the sound of “scratching” (e.g., with a fingernail) that is 
transmitted through the surface material. This signal can be 
used to recognize a vocabulary of gestures carried out by 
the user. Our sensor is simple and inexpensive, and can be 
easily incorporated into mobile devices, enabling them to 
appropriate whatever solid surface they happen to be rest-
ing on. Alternately, it can be very easily deployed, for ex-
ample, to make existing walls or furniture input-capable. 

SENSING 
Scratch Input takes advantage of particular physical effects 
in order to detect input on surfaces like tables, walls, and 
even clothes. Foremost, a fingernail dragged over a tex-
tured surface, such as wood, fabric, or wall paint, will pro-
duce a sound containing a particularly high frequency com-
ponent (typically greater than 3000Hz). This high fre-
quency property allows it to be easily separated from other 
typical house and office noises, for example, voice (90-
300Hz), singing (80-1200Hz), typical mechanical vibration 
(e.g., refrigerator compressors, washing machines), and AC 
driven lighting, etc. (50 or 60Hz).  
Another important property that is exploited is that sound 
propagates through solid (and liquid) materials much more 
efficiently than through the air. So while running your fin-
gernail across a surface will produce only a soft audible 
noise, the signal transmits considerably better through the 
solid host material. This superior transmission of sound 
means that a signal is not only transmitted further, but is 
also better preserved (i.e., less noisy). These two properties 
work in concert to enable Scratch Input to work reliably 
across large input areas.  
To capture sound transmission through solid materials, we 
use a modified stethoscope (Figure 1). This is particularly 
well suited to both amplifying sound and detecting high 
frequency noises. This is attached to a generic microphone, 
which converts the sound into an electrical signal. In our 
particular implementation, the signal is amplified and con-
nected to a computer through the audio-input jack. If mass-
produced, this sensor might cost less than one dollar. 
This method has one important constraint not shared by 
many existing surface input approaches (see for example 
[2,3,4,9]) - it cannot determine the spatial location of input. 
Sensing locality is difficult not only because we use a sin-
gle sensor, but also because Scratch Input is designed to 
operate in an ad hoc fashion on a range of materials, often 
with varying sound transmission properties (precluding, for 
example, the clever acoustic fingerprint approach employed 
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in [8]). Prior systems that employ multiple microphones to 
determine position include [10] and the commercial Mimio 
whiteboard sensor (see mimio.com). Additionally, the ad 
hoc appropriation of existing surfaces (similar to the use of 
hands in [1]) stands in contrast to systems like [6,7], which 
require specifically manufactured textured surfaces. 
Scratch Input’s non-spatial property gives it a significantly 
different character from many other surface input tech-
niques and does preclude some uses (e.g., for pointing and 
cursor control). However, Scratch Input is primarily de-
signed to augment existing, passive surfaces, few of which 
have visual displays to point at. Instead, Scratch Input is 
targeted towards simple gestural input, providing the con-
venience of ad hoc appropriation of surfaces and/or easy 
and unobtrusive (semi-)permanent installation.  
Sensing is surprisingly robust in a wide variety of use con-
texts. The same sensor can be used for walls, doors, 
clothes, desks, countertops, cabinets, and many other sur-
faces. The only notable restriction is that surfaces must be 
continuous – any gap will prevent the sound from propagat-
ing. So, for example, two adjacent tables, even if touching, 
are not likely to be acoustically coupled. This is not neces-
sarily a negative quality. If there are multiple users working 
in close proximity, they might not want to send input to 
each other’s workspaces. A good example of this is a class-
room, where students have their own desks and carry out 
independent tasks in parallel.  
Although we will only discuss finger input, it should be 
noted that Scratch Input also works with other implements, 
most notably styluses like those found on PDAs. Addition-
ally, although not tested, Scratch Input could also be used 
to augment whiteboards and blackboards, enabling markers 
and chalk to not only write, but also issue commands.  

GESTURE RECOGNITION 
Even the simplest of gestures requires a finger to move, 
accelerate, and decelerate in a particular way. For a straight 
line, this might start with an accelerating motion followed 

by a deceleration. These movements interact with the tex-
tual features of a surface to produce a particular sound. 
Specifically, the faster a motion is performed, the higher its 
amplitude (i.e., volume) and frequency. Conversely, a 
slower motion produces a lower frequency and lower am-
plitude signal. This effect can be heard with the naked ear. 
Complex gestures are ultimately made up of sequences of 
these base motions, which produces a unique acoustic sig-
nature. Figure 2 shows the amplitude response of a line, 
circle, triangle and square gesture.  
Unlike traditional gestures, which are spatially unique (in 
two or three dimensions), scratch input gestures must be 
acoustically unique (essentially one-dimensional). For ex-
ample, many letters that are written differently, sound very 
similar (e.g., M/W, V/L, X/T). Scratch Input cannot accu-
rately distinguish between these gestures. Although this 
limits the expressivity of the input, there is still sufficient 
power to support dozens of gestures, especially through the 
use of multi-part inputs (Figure 3 offers some examples).  
Scratch Input can also support gestures for continuous con-
trol of actions like scrolling, seeking, and volume adjust-
ment. For example, scrolling down a menu could be done 
with a “menu start” gesture, which then trails into a con-
tinuous straight line. When the desired item is reached, the 
user simply stops moving his or her finger. (This approach 
is conceptually related to the “pigtail” gestures described in 
[5] and should have similar advantages.) A similar effect 
can be achieved with a repeating up and down gesture or a 
circling motion. Additionally, Scratch Input uses the ampli-
tude of the signal (correlated with finger velocity) to pro-
vide variable rate control. This allows users to scroll 
quickly or slowly. This not only allows for precise adjust-
ment, but also is intuitive, as real world magnitude controls 
offer the same flexibility (e.g. dials, sliders, levers).  
Early prototype gesture recognizers employed dynamic 
time warping and naive Bayes classification. These were 
ultimately discarded in favor a lighter-weight approach - 
our final recognizer uses a shallow decision tree primarily 
based on peak count and amplitude variation. This imple-
mentation can easily run in real-time on a low-powered 
mobile device. Several methods are employed to reduce 
false positives, including gesture rejection, noise suppres-
sion, amplitude-independent peak detection, and input win-
dowing. For our simple, proof-of-concept gesture set, we 
were able to achieve high accuracy rates using only ampli-
tude response. However, a more sophisticated recognition 
engine could incorporate other dimensions, such as fre-
quency and duration, and likely be able to support consid-
erably more gestures and at higher accuracies.  

Figure 1. The front and back sides of our sensor, a 
modified stethoscope. 

Figure 2. Amplitude profiles for different gestures. 

 

Figure 3. Distinct multi-part gestures composed of 
taps, lines and circles.   

 



 

 

Our recognizer also handles finger taps. Although not 
“scratches”, they are a convenient, easily preformed, and 
accurately classified type of input. They are characterized 
by a short burst of high frequency and high intensity sound. 
As with any acoustic-based system, environmental noise is 
problematic. Scratch Input sidesteps much of this problem 
by operating solely above 3KHz. Also, environmental 
noises (e.g., voice, music, footsteps) tend not to be trans-
mitted with sufficient volume to surfaces like walls. None-
theless, the technique is susceptible to interference in cer-
tain deployments, and recognizers will need to employ so-
phisticated methods to robustly handle false signals.   

EXAMPLE APPLICATIONS 
During initial experimentation, we primarily concentrated 
on two classes of surfaces: tables and walls. These were the 
strongest candidates for large, easily appropriated or retro-
fitted input surfaces. Part of our exploration of these sur-
faces involved producing and testing a proof-of-concept 
application for each use context, the outcome of which we 
present below. We also briefly investigated device enclo-
sures and fabric (e.g., clothes) as input surfaces. 

Tables and Mobile Devices 
Tables, usually made of dense materials like wood, have 
excellent transmission characteristics. We found that for 
typically sized tables (1 to 3m wide and 1 to 2m deep), our 
sensor can be placed anywhere on the surface and receive 
input from any part. A dozen different tables were tested, 
with almost all yielding excellent results. The two excep-
tions were a glass and highly glossy wood table, both of 
which are almost texture-less and produced too weak of a 
signal to be detected. Furthermore, it appears that objects 
resting on the table (e.g., mugs, lamps, pens, papers, com-
puter monitors) do not affect sound transmission quality.  
Our sensor could be easily incorporated into mobile de-
vices, such as cell phones, PDAs, and laptops. This would 
allow them to receive Scratch Input on whatever surface 
they are resting on. This essentially provides a mobile, ad-
hoc input surface wherever the user sets down the device. 
Consider the example of a cell phone augmented with our 
sensor sitting on a table. If there was incoming call, the 
user could silence the ring by simply writing a gesture 
anywhere on the table’s surface. On the other hand, if the 
user wished to take the call, they could issue a gesture that 
answered using the speakerphone. This has the beneficial 
property of not requiring the user to move their visual at-
tention away from their current task or to reach for the de-
vice to interact with its buttons.  
We simulated this interaction by placing our sensor on the 
surface of a table. We then rested a cell phone on top of the 
sensor to mimic the correct pressure that would be applied. 
Our computer-based recognizer understood three gestures, 
switch to normal mode (a back and forth motion with at 
least five passes), switch to silent mode (the letter ‘S’), and 
answer using speakerphone (an abstract ‘A’ gesture, drawn 
like an upside-down ‘V’). This simple, yet useful gesture 
vocabulary proved to be very accurate.  

Additionally, it is not unusual for multiple devices to reside 
on a single work surface, such as a desk at home or work. 
This means that gestures issued to the surface will be 
broadcast to all devices resting on it. Although devices will 
likely want to support their own unique gestures (so you 
could gesture to a particular device or class of devices), it is 
also interesting to consider universal gestures. For example, 
imagine we have a cell phone and laptop sitting on a com-
mon table. If a user did not want to be disturbed, a single 
gesture could be issued that turns the cell phone to silent, 
logs out of instant messenger, and closes the email client.  

Walls 
Walls, being both ubiquitous and large, are a strong candi-
date for input. In a typical wood frame house with painted 
drywall, our sensor had an effective range of about 8m. 
Thus, a single sensor could provide a wall-based input sur-
face 16m wide from floor to ceiling, an area of approxi-
mately 40 square meters. Tests also revealed that the signal 
propagates strongly around corners, and, although with 
some loss of signal, successfully around door openings. 
This means a few dozen easily installed sensors could be 
used to outfit an entire house. However, this property also 
means adjacent rooms (with common walls) may not be 
acoustically isolated, making use in shared environments 
(e.g., an office) potentially problematic. It should also be 
noted that repeated “scratching” of walls without proper 
surface treatment could produce marks after extended use.   
We built a simple, proof-of-concept audio player that lets 
users issue commands on their home walls. Users were able 
to pause and play with a double tap. A double swipe ges-
ture toggled between volume and seek modes. Users could 
single tap to toggle between increasing or decreasing the 
volume and seeking forwards or backwards (depending on 
the current mode). A continuous circling motion was used 
as magnitude control. This is used for seeking and adjust-
ing the volume.  

Device Enclosures 
Most electronics are encased in a plastic shell. We can 
augment these devices with Scratch Input by coupling a 
microphone to this surface. Some devices already have this 
feature, including cell phones and many laptops. To verify 
this effect, we captured audio samples of Scratch Input on a 
cell phone and a laptop, both of which performed well.  
As noted previously, sound only transmits through con-
tiguous materials. For example, with the flip phone we 
tested, this meant that Scratch Input was limited to the bot-
tom half (i.e., the half with the microphone). Regardless, 
this opened the possibility for several new input areas, in-
cluding the bottom and sides of the device, as well as the 
large area covering the battery on the backside the phone. 
This was also true of the Apple MacBook we tested. In this 
case, the microphone was located above the display, limit-
ing input to the bezel around the LCD screen and the rear 
of the monitor. However, microphones are sufficiently in-
expensive that it would be trivial to add additional sensing 
locations. For example, the palm-rest area of a laptop could 
be turned into a large, non-spatial trackpad.  



 

 

We produced two simple Scratch Input applications for use 
with a laptop enclosure. The first application allowed users 
to move forwards and backwards in their PowerPoint pres-
entation. The second application allowed users to navigate 
their file system. Like a mouse, a single tap was used to 
select a file or directory, while a double tap was used to 
open. Users could also scroll by dragging their finger in a 
continuous line down the side of their display.  

Fabric  
Mobile devices often reside in people’s pockets. In order to 
perform even simple actions, like turning a cell phone to 
silent, requires “getting out” the device. This frequently 
requires a great deal of visual attention, especially if menus 
have to be navigated. This can be obtrusive in some social 
contexts. Scratch Input, however, would allow commands 
to be issued by simply writing a gesture on or near the 
pocket area. Since the human body mostly composed of 
liquid, it can transmit sound short distances without too 
much degradation. In simple tests, we found that a sensor 
placed in the pocket facing towards the leg could detect 
input from roughly the belt line down to the knee. The chief 
obstacle with fabric-based input is the high level of noise, 
especially during activities like walking. However, it may 
be possible to engineer gestures that are sufficiently unique 
that false positives remain low.  

EVALUATION 
To gauge the accuracy of our proof-of-concept Scratch 
Input gesture set and recognizer, we recruited 15 partici-
pants (9 female) with a mean age of 31. The experiment 
was conducted in participants’ offices or homes in order to 
simultaneously evaluate the robustness of Scratch Input on 
a realistic variety of real world input surfaces. Participants 
were paid ten dollars for their involvement.   
Participants were given a brief description of Scratch Input 
and shown the sensor. The sensor was then placed on a 
surface, off to one side, and weighted down with a cell 
phone. A laptop was situated in front of them, but suffi-
ciently far away such that there was at least one square me-
ter of input area.  
We choose six simple gestures for inclusion in the experi-
ment: single tap, double tap, single swipe, double swipe, 
triple swipe, and quad swipe. The latter four gestures were 
equivalent to the letters I, V, N and W. These were selected 
because they represented increasingly complex gesture 
sequences already familiar to our subjects, allowing us to 
test a hypothesis that accuracy rates would fall as gesture 
complexity rose.  
First participants were shown what the gestures look like 
graphically with a brief PowerPoint presentation (swipe 
gestures were shown as letters). Then, participants were 
given a maximum of five minutes to practice inputting 
these gestures. The laptop ran a full-screen, real-time ver-
sion of our gesture recognizer to show participants if their 
input was being classified correctly. During this period, the 
experimenter provided advice and/or demonstrated gestures 
in order to help train the participant.  

Following this training period, a new program was 
launched that displayed which gesture the participant 
needed to perform. Each gesture was requested five times, 
for a total of 30 trials. The sequence was randomized for 
each participant to compensate for any order effects.  
Results indicate participants were able to achieve an aver-
age accuracy of 89.5%. As hypothesized, accuracy suffered 
as gesture complexity grew (Figure 4). Gestures with two 
of fewer motions achieved accuracies in excess of 90%. 

CONCLUSION 
We presented Scratch Input, an acoustic-based finger input 
technique that can be used to create large, inexpensive and 
mobile finger input surfaces. This can allow mobile devices 
to appropriate surfaces on which they rest for gestural in-
put. Our investigations revealed that Scratch Input is both 
easy to use and accurate on a variety of surfaces.  
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Figure 4. Average accuracy for the six test gestures. 

 


